This is the multi-page printable view of this section. Click here to print.

Return to the regular view of this page.

Tutorials

Handle, Describe, and Plot the EM-DAT Data

1 - Python Tutorial 1: Basic Operations and Plotting

This tutorial shows basic examples on how to load, handle, and plot the EM-DAT data using the pandas Python data analysis package and the matplotlib charting library.

Note: The Jupyter Notebook version of this tutorial is available on the EM-DAT Python Tutorials GitHub Repository.

Import Modules

Let us import the necessary modules and print their versions. For this tutorial, we used pandas v.2.1.1 and matplotlib v.3.8.3. If your package versions are different, you may have to adapt this tutorial by checking the corresponding package documentation.

import pandas as pd #data analysis package
import matplotlib as mpl
import matplotlib.pyplot as plt #plotting library
for i in [pd, mpl]:
    print(i.__name__, i.__version__)
pandas 2.1.1
matplotlib 3.8.3

Load EM-DAT

To load EM-DAT:

Notes:

  1. You may need to install the openpyxl package or another engine to make it possible to read the data.
  2. Another option is to export the .xlsx file into a .csv, and use the pd.read_csv method;
  3. If not in the same folder as the Python code, replace the filename with the relative path or the full path, e.g., E:/MyDATa/public_emdat_2024-01-08.xlsx
#!pip install openpyxl
df = pd.read_excel('public_emdat_2024-01-08.xlsx') # <-- modify file name or path
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 15560 entries, 0 to 15559
Data columns (total 46 columns):
 #   Column                                     Non-Null Count  Dtype  
---  ------                                     --------------  -----  
 0   DisNo.                                     15560 non-null  object 
 1   Historic                                   15560 non-null  object 
 2   Classification Key                         15560 non-null  object 
 3   Disaster Group                             15560 non-null  object 
 4   Disaster Subgroup                          15560 non-null  object 
 5   Disaster Type                              15560 non-null  object 
 6   Disaster Subtype                           15560 non-null  object 
 7   External IDs                               2371 non-null   object 
 8   Event Name                                 4904 non-null   object 
 9   ISO                                        15560 non-null  object 
 10  Country                                    15560 non-null  object 
 11  Subregion                                  15560 non-null  object 
 12  Region                                     15560 non-null  object 
 13  Location                                   14932 non-null  object 
 14  Origin                                     3864 non-null   object 
 15  Associated Types                           3192 non-null   object 
 16  OFDA Response                              15560 non-null  object 
 17  Appeal                                     15560 non-null  object 
 18  Declaration                                15560 non-null  object 
 19  AID Contribution ('000 US$)                490 non-null    float64
 20  Magnitude                                  3356 non-null   float64
 21  Magnitude Scale                            9723 non-null   object 
 22  Latitude                                   1809 non-null   float64
 23  Longitude                                  1809 non-null   float64
 24  River Basin                                1197 non-null   object 
 25  Start Year                                 15560 non-null  int64  
 26  Start Month                                15491 non-null  float64
 27  Start Day                                  14068 non-null  float64
 28  End Year                                   15560 non-null  int64  
 29  End Month                                  15401 non-null  float64
 30  End Day                                    14132 non-null  float64
 31  Total Deaths                               12485 non-null  float64
 32  No. Injured                                5694 non-null   float64
 33  No. Affected                               7046 non-null   float64
 34  No. Homeless                               1312 non-null   float64
 35  Total Affected                             11508 non-null  float64
 36  Reconstruction Costs ('000 US$)            33 non-null     float64
 37  Reconstruction Costs, Adjusted ('000 US$)  29 non-null     float64
 38  Insured Damage ('000 US$)                  691 non-null    float64
 39  Insured Damage, Adjusted ('000 US$)        683 non-null    float64
 40  Total Damage ('000 US$)                    3070 non-null   float64
 41  Total Damage, Adjusted ('000 US$)          3020 non-null   float64
 42  CPI                                        15056 non-null  float64
 43  Admin Units                                8336 non-null   object 
 44  Entry Date                                 15560 non-null  object 
 45  Last Update                                15560 non-null  object 
dtypes: float64(20), int64(2), object(24)
memory usage: 5.5+ MB

Example 1: Japan Earthquake Data

Filtering

Let us focus on the EM-DAT earthquakes in Japan from the years 2000 to 2003 and create a suitable filter utilizing the EM-DAT columns Disaster Type, ISO and Start Year.

For simplicity, let’s retain only the columns Start Year, Magnitude, and Total Deaths and display the first five entries using the pd.DataFrame.head method.

Note: For further details about the columns, we refer to the EM-DAT Documentation page EM-DAT Public Table.

eq_jpn = df[
    (df['Disaster Type'] == 'Earthquake') &
    (df['ISO'] == 'JPN') &
    (df['Start Year'] < 2024)
][['Start Year', 'Magnitude', 'Total Deaths', 'Total Affected']]
eq_jpn.head(5)
Start Year Magnitude Total Deaths Total Affected
392 2000 6.1 1.0 100.0
610 2000 6.7 NaN 7132.0
1013 2001 6.8 2.0 11261.0
2791 2003 7.0 NaN 2303.0
2884 2003 5.5 NaN 18191.0

Grouping

Let us group the data to calculate the number of earthquake events by year and plot the results.

  • Use the groupby method to group based on one or more columns in a DataFrame, e.g., Start Year;
  • Use the size method as an aggregation method (or count).
  • Plot the results using the pd.DataFrame.plot method.

Note: The count method provides the total number of non-missing values, while size gives the total number of elements (including missing values). Since the field Start Year is always defined, both methods should return the same results.

eq_jpn.groupby(['Start Year']).size().plot(kind='bar', ylabel='Count')
<Axes: xlabel='Start Year', ylabel='Count'>

Output plot

Customize Chart

The pandas library relies on the matplotlib package to draw charts. To have more flexibility on the rendered chart, let us create the figure using the imported plt submodule.

# Group earthquake data by 'Start Year' and count occurrences
eq_cnt = eq_jpn.groupby(['Start Year']).size()

# Initialize plot with specified figure size
fig, ax = plt.subplots(figsize=(7, 2))

# Plot number of earthquakes per year
ax.bar(eq_cnt.index, eq_cnt)

# Set axis labels and title
ax.set_xlabel('Year')
ax.set_ylabel('N° of Earthquakes')
ax.set_yticks([0, 1, 2, 3])  # Define y-axis tick marks
ax.set_title('EM-DAT Earthquakes in Japan (2000-2023)')
Text(0.5, 1.0, 'EM-DAT Earthquake in Japan (2000-2023)')

Output plot

Example 2: Comparing Regions

Let us compare earthquake death toll by continents. As before, we filter the original dataframe df according to our specific needs, including the Region column.

eq_all = df[
    (df['Disaster Type'] == 'Earthquake') &
    (df['Start Year'] < 2024)
][['Start Year', 'Magnitude', 'Region', 'Total Deaths', 'Total Affected']]
eq_all.head(5)
Start Year Magnitude Region Total Deaths Total Affected
23 2000 4.3 Asia NaN 1000.0
33 2000 5.9 Asia 7.0 1855007.0
36 2000 4.9 Asia 1.0 10302.0
41 2000 5.1 Asia NaN 62030.0
50 2000 5.3 Asia 1.0 2015.0

In this case,

  • Use the groupby method to group based on the Region column;
  • Use the sum method for the Total Deaths field as aggregation method;
  • Plot the results easilly using the pd.DataFrame.plot method.
eq_sum = eq_all.groupby(['Region'])['Total Deaths'].sum()
eq_sum
Region
Africa        5863.0
Americas    229069.0
Asia        548766.0
Europe         783.0
Oceania        641.0
Name: Total Deaths, dtype: float64

Finally, let us make an horizontal bar chart of it using matplotlib. In particular,

  • use the ax.ticklabel_format method to set the x axis label as scientific (in thousands of deaths);
  • use the ax.invert_yaxis to display the regions in alphabetical order from top to bottom.
fig, ax = plt.subplots(figsize=(4,3))
ax.barh(eq_sum.index, eq_sum)
ax.set_xlabel('Total Earthquake Deaths')
ax.ticklabel_format(style='sci',scilimits=(3,3),axis='x')
ax.invert_yaxis()
ax.set_title('EM-DAT Earthquake Deaths by Regions')
Text(0.5, 1.0, 'EM-DAT Earthquake Deaths by Regions')

Output plot

Example 3: Multiple Grouping

At last, let us report the earthquake time series by continents. To avoid the creation of a ['Region', 'Start Year'] multiindex for future processing, we set the argument as_index to False. As such, Region and Start Year remain columns.

eq_reg_ts = eq_all.groupby(
    ['Region', 'Start Year'], as_index=False
)['Total Deaths'].sum()
eq_reg_ts
Region Start Year Total Deaths
0 Africa 2000 1.0
1 Africa 2001 0.0
2 Africa 2002 47.0
3 Africa 2003 2275.0
4 Africa 2004 943.0
... ... ... ...
92 Oceania 2016 2.0
93 Oceania 2018 181.0
94 Oceania 2019 0.0
95 Oceania 2022 7.0
96 Oceania 2023 8.0

97 rows × 3 columns

Next, we apply the pivot method to restructure the table in a way it could be plot easilly.

eq_pivot_ts = eq_reg_ts.pivot(
    index='Start Year', columns='Region', values='Total Deaths'
)
eq_pivot_ts.head()
Region Africa Americas Asia Europe Oceania
Start Year
2000 1.0 9.0 205.0 0.0 2.0
2001 0.0 1317.0 20031.0 0.0 0.0
2002 47.0 0.0 1554.0 33.0 5.0
2003 2275.0 38.0 27301.0 3.0 NaN
2004 943.0 10.0 226336.0 1.0 NaN
ax = eq_pivot_ts.plot(kind='bar', width=1, figsize=(6,3))
ax.set_ylabel('Total Deaths')
ax.set_title('EM-DAT Earthquake Deaths by Regions')
Text(0.5, 1.0, 'EM-DAT Earthquake Deaths by Regions')

Output plot

In order to be able to visualize the data in more details, let us make a subplot instead by setting the subplot argument to True within the plot method.

ax = eq_pivot_ts.plot(kind='bar', subplots=True, legend=False, figsize=(6,6))
plt.tight_layout() # <-- adjust plot layout

Output plot

We have just covered the most common manipulations applied to a pandas DataFrame containing the EM-DAT data. To delve further into your analyses, we encourage you to continue your learning of pandas and matplotlib with the many resources available online, starting with the official documentation.

If you are interested in learning the basics of making maps based on EM-DAT data, you can also follow the second EM-DAT Python Tutorial.

2 - Python Tutorial 2: Making Maps

If you have followed the first EM-DAT Python Tutorial 1 or are already familiar with pandas and matplotlib, this second tutorial will show you basic examples on how to make maps with the EM-DAT data using the geopandas Python package.

Note: The Jupyter Notebook version of this tutorial is available on the EM-DAT Python Tutorials GitHub Repository.

Import Modules

Let us import the necessary modules and print their versions. For this tutorial, we used pandas v.2.1.1, geopandas v.0.14.3, and matplotlib v.3.8.3. If your package versions are different, you may have to adapt this tutorial by checking the corresponding package documentation.

import pandas as pd #data analysis package
import geopandas as gpd
import matplotlib as mpl
import matplotlib.pyplot as plt #plotting library
for i in [pd, gpd, mpl]:
    print(i.__name__, i.__version__)
pandas 2.2.1
geopandas 0.14.3
matplotlib 3.8.3

Creating a World Map

To create a world map, we need the EM-DAT data and a shapefile containing the country geometries.

EM-DAT: We download and load the EM-DAT data using pandas.

Country Shapefile: We download a country shapefile from Natural Earth Data. For a world map, we download the low resolution 1:110m Adimin 0 - Countries (last accessed: March 10, 2024) and unzip it.

Load and Filter EM-DAT

Let us load EM-DAT and filter it to make a global map of Earthquake disasters between 2000 and 2023. We calculate the number of unique identifiers (DisNo.) per country (ISO) We refer to the standard ISO column instead of the Country column of the EM-DAT Public Table to be able to make a join with the country shapefile.

df = pd.read_excel('public_emdat_2024-01-08.xlsx')
earthquake_counts = df[
    (df['Disaster Type'] == 'Earthquake') &
    (df['Start Year'] < 2024)
].groupby('ISO')["DisNo."].count().reset_index(name='EarthquakeCount')
earthquake_counts
ISO EarthquakeCount
0 AFG 21
1 ALB 4
2 ARG 2
3 ASM 1
4 AZE 3
... ... ...
86 USA 10
87 UZB 1
88 VUT 2
89 WSM 1
90 ZAF 2

91 rows × 2 columns

Load the Country Shapefile

We use the gpd.read_file method to load the country shapefile and parse it into a geodataframe. A geodataframe is similar to a pandas dataframe, extept that has a geometry column.

We provide the filename argument, which is either a file name if located in the same directory than the running script, or a relative or absolute path, if not. In our case the shapefile with the .shp extension is located in the ne_110m_admin_0_countries folder.

Since the geodataframe contains 169 columns, we only keep the two column that we are interrested in, i.e., ISO_A3 and geometry.

gdf = gpd.read_file ('ne_110m_admin_0_countries/ne_110m_admin_0_countries.shp') # <-- Change path if necessary
gdf = gdf[['ISO_A3', 'geometry']]
gdf
Cannot find header.dxf (GDAL_DATA is not defined)
ISO_A3 geometry
0 FJI MULTIPOLYGON (((180.00000 -16.06713, 180.00000...
1 TZA POLYGON ((33.90371 -0.95000, 34.07262 -1.05982...
2 ESH POLYGON ((-8.66559 27.65643, -8.66512 27.58948...
3 CAN MULTIPOLYGON (((-122.84000 49.00000, -122.9742...
4 USA MULTIPOLYGON (((-122.84000 49.00000, -120.0000...
... ... ...
172 SRB POLYGON ((18.82982 45.90887, 18.82984 45.90888...
173 MNE POLYGON ((20.07070 42.58863, 19.80161 42.50009...
174 -99 POLYGON ((20.59025 41.85541, 20.52295 42.21787...
175 TTO POLYGON ((-61.68000 10.76000, -61.10500 10.890...
176 SSD POLYGON ((30.83385 3.50917, 29.95350 4.17370, ...

177 rows × 2 columns

Important Notice: Above, some geometries do not have a ISO code, such as the one at row 174. Below, you will see that some ISO in EM-DAT are not matched with a geometries. Beyond this basic tutorial, we advice to carefully evaluate these correspondance and non-correspondance between ISO codes and to read the EM-DAT Documentation about ISO codes.

Join the Two Datasets

Let us merge the two dataset with an outer join, using the merge method. We prefer an outer join to keep the geometries of countries for which EM-DAT has no records.

earthquake_counts_with_geom = gdf.merge(
    earthquake_counts, left_on='ISO_A3', right_on='ISO', how='outer')
earthquake_counts_with_geom
ISO_A3 geometry ISO EarthquakeCount
0 -99 MULTIPOLYGON (((15.14282 79.67431, 15.52255 80... NaN NaN
1 -99 MULTIPOLYGON (((-51.65780 4.15623, -52.24934 3... NaN NaN
2 -99 POLYGON ((32.73178 35.14003, 32.80247 35.14550... NaN NaN
3 -99 POLYGON ((48.94820 11.41062, 48.94820 11.41062... NaN NaN
4 -99 POLYGON ((20.59025 41.85541, 20.52295 42.21787... NaN NaN
... ... ... ... ...
185 NaN None WSM 1.0
186 YEM POLYGON ((52.00001 19.00000, 52.78218 17.34974... NaN NaN
187 ZAF POLYGON ((16.34498 -28.57671, 16.82402 -28.082... ZAF 2.0
188 ZMB POLYGON ((30.74001 -8.34001, 31.15775 -8.59458... NaN NaN
189 ZWE POLYGON ((31.19141 -22.25151, 30.65987 -22.151... NaN NaN

190 rows × 4 columns

Make the Map

To make the map, we use the geopandas built-in API, through the plot method built on the top of matplotlib. Below, we show an hybrid plotting approach and first create an empty figure fig and ax object with matplotlib before passing the ax object as an argument within the plot method. This approach gives more control to users familiar with matplotlib to further customize the chart.

fig, ax = plt.subplots(figsize=(8,3))
earthquake_counts_with_geom.plot(
    column='EarthquakeCount',
    ax=ax,
    cmap='Reds',
    vmin=1,
    legend=True,
    legend_kwds={"label": "Nb of EM-DAT Earthquake"},
    missing_kwds= dict(color = "lightgrey",)
)
_ = ax.set_xlabel('Lon.')
_ = ax.set_ylabel('Lat.')

Output plot

Creating a Map at Admin Level 1

We can create a more detailed map using the Admin Units column in the EM-DAT Public Table. This column contains the identifiers of administrative units of level 1or 2 as defined by the Global Administrative Unit Layer (GAUL) for country impacted by non-biological natural hazards.

Similarly to the country map, we need to download a file containing GAUL geometries. The file corresponds to the last version of GAUL published in 2015. In this tutorial, we will focus on Japanese earthquake occurrence in EM-DAT.

Note: the file size is above 1.3Go and requires a performant computer to process in Python. Using a Geographical Information Software (GIS) for the preprocessing is another option.

Load the Admin Units Geopackage

The file is a geopackage .gpkg that contains multiple layers. Let us first describe these layers with the fiona package, which is a geopandas dependency.

import fiona
print(fiona.__name__, fiona.__version__)
for layername in fiona.listlayers('gaul2014_2015.gpkg'):
    with fiona.open('gaul2014_2015.gpkg', layer=layername) as src:
        print(layername, len(src))
fiona 1.9.5
level2 38258
level1 3422
level0 277
  • The level0 layer contains the country geometries defined in GAUL.
  • Here, we make a map at the level1.
  • Still, we need to load the administrative level2 because the Admin Units column may refer to Admin 2 levels without mentionning the corresponding Admin 1 level.
  • Given the high size the admin 2 layer, we filter the data about Japan and overwrite our geodataframe variable to save memory.
gaul_adm2 = gpd.read_file ('gaul2014_2015.gpkg', layer='level2') 
gaul_adm2 = gaul_adm2[gaul_adm2['ADM0_NAME'] == 'Japan']
gaul_adm2.info()
<class 'geopandas.geodataframe.GeoDataFrame'>
Index: 3348 entries, 23205 to 26552
Data columns (total 13 columns):
 #   Column      Non-Null Count  Dtype   
---  ------      --------------  -----   
 0   ADM2_CODE   3348 non-null   int64   
 1   ADM2_NAME   3348 non-null   object  
 2   STR2_YEAR   3348 non-null   int64   
 3   EXP2_YEAR   3348 non-null   int64   
 4   ADM1_CODE   3348 non-null   int64   
 5   ADM1_NAME   3348 non-null   object  
 6   STATUS      3348 non-null   object  
 7   DISP_AREA   3348 non-null   object  
 8   ADM0_CODE   3348 non-null   int64   
 9   ADM0_NAME   3348 non-null   object  
 10  Shape_Leng  3348 non-null   float64 
 11  Shape_Area  3348 non-null   float64 
 12  geometry    3348 non-null   geometry
dtypes: float64(2), geometry(1), int64(5), object(5)
memory usage: 366.2+ KB

The Admin 2 geodataframe has 12 columns describing the 3348 level 2 administrative units in Japan.

Filter EM-DAT Data

df_jpn = df[
    (df['ISO'] == 'JPN') &
    (df['Disaster Type'] == 'Earthquake') &
    (df['Start Year'] < 2024)
][['DisNo.', 'Admin Units']]
df_jpn
DisNo. Admin Units
392 2000-0428-JPN [{"adm2_code":36308,"adm2_name":"Koodusimamura...
610 2000-0656-JPN [{"adm1_code":1680,"adm1_name":"Okayama"},{"ad...
1013 2001-0123-JPN [{"adm1_code":1654,"adm1_name":"Ehime"},{"adm1...
2791 2003-0249-JPN [{"adm1_code":1652,"adm1_name":"Akita"},{"adm1...
2884 2003-0354-JPN [{"adm2_code":35135,"adm2_name":"Hurukawasi"},...
3014 2003-0476-JPN [{"adm1_code":1661,"adm1_name":"Hokkaidoo"}]
3824 2004-0532-JPN [{"adm1_code":1690,"adm1_name":"Tookyoo"},{"ad...
4182 2005-0129-JPN [{"adm1_code":1656,"adm1_name":"Hukuoka"}]
4253 2005-0211-JPN [{"adm1_code":1656,"adm1_name":"Hukuoka"},{"ad...
5769 2007-0101-JPN [{"adm1_code":1678,"adm1_name":"Niigata"},{"ad...
5912 2007-0258-JPN [{"adm1_code":1675,"adm1_name":"Nagano"},{"adm...
6311 2007-0654-JPN [{"adm1_code":1672,"adm1_name":"Mie"},{"adm1_c...
6606 2008-0242-JPN [{"adm1_code":1652,"adm1_name":"Akita"},{"adm2...
6637 2008-0275-JPN [{"adm2_code":33543,"adm2_name":"Hatinohesi"}]
7335 2009-0320-JPN [{"adm1_code":1690,"adm1_name":"Tookyoo"},{"ad...
8403 2011-0082-JPN [{"adm1_code":1652,"adm1_name":"Akita"},{"adm1...
8447 2011-0130-JPN [{"adm1_code":1695,"adm1_name":"Yamagata"},{"a...
9596 2013-0127-JPN [{"adm1_code":1662,"adm1_name":"Hyoogo"}]
10468 2014-0465-JPN [{"adm2_code":35261,"adm2_name":"Hakubamura"}]
11276 2016-0107-JPN [{"adm1_code":1670,"adm1_name":"Kumamoto"}]
11291 2016-0121-JPN [{"adm1_code":1670,"adm1_name":"Kumamoto"},{"a...
11631 2016-0492-JPN [{"adm2_code":36364,"adm2_name":"Kurayosisi"}]
12449 2018-0183-JPN [{"adm1_code":1662,"adm1_name":"Hyoogo"},{"adm...
12589 2018-0330-JPN [{"adm2_code":34179,"adm2_name":"Atumatyoo"},{...
13030 2019-0322-JPN [{"adm1_code":1664,"adm1_name":"Isikawa"},{"ad...
13949 2021-0105-JPN [{"adm2_code":33868,"adm2_name":"Namiemati"}]
14005 2021-0194-JPN [{"adm1_code":1651,"adm1_name":"Aiti"},{"adm1_...
14584 2022-0153-JPN NaN
15236 2023-0279-JPN NaN

Note: The last two events were not geolocated at a higher administrative levels.

Convert Admin 2 units to Admin 1 units

We create a python function, json_to_amdmin1, to extract the administrative level 1 codes from the Admin Units column of EM-DAT, based on the ADM1_CODE and ADM2_CODE of the Japan geodataframe.

import json

def json_to_admin1(json_str, gdf):
    """
    Convert a JSON string to a set of administrative level 1 codes.

    Parameters
    ----------
    json_str
        A JSON string representing administrative areas, or None.
    gdf
        A GeoDataFrame containing administrative codes and their corresponding 
        levels.

    Returns
    -------
    A set of administrative level 1 (ADM1) codes extracted from the input JSON.

    Raises
    ------
    ValueError
        If the administrative code is missing from the input data or ADM2_CODE 
        not found in the provided GeoDataFrame.

    """
    adm_list = json.loads(json_str) if isinstance(json_str, str) else None
    adm1_list = []
    if adm_list is not None:
        for entry in adm_list:
            if 'adm1_code' in entry.keys():
                adm1_code = entry['adm1_code']
            elif 'adm2_code' in entry.keys():
                gdf_sel = gdf[gdf['ADM2_CODE'] == entry['adm2_code']]
                if not gdf_sel.empty:
                    adm1_code = gdf_sel.iloc[0]['ADM1_CODE']
                else:
                    raise ValueError(
                        'ADM2_CODE not found in the provided GeoDataFrame.'
                    )
            else:
                raise ValueError(
                    'Administrative code is missing from the provided data.'
                )
            adm1_list.append(adm1_code)
    return set(adm1_list)

We apply the function to all elements of the Admin Units column.

df_jpn.loc[:, 'Admin_1'] = df_jpn['Admin Units'].apply(
    lambda x: json_to_admin1(x, gaul_adm2))

df_jpn[['Admin Units', 'Admin_1']] 
Admin Units Admin_1
392 [{"adm2_code":36308,"adm2_name":"Koodusimamura... {1690}
610 [{"adm1_code":1680,"adm1_name":"Okayama"},{"ad... {1680, 1691, 1686}
1013 [{"adm1_code":1654,"adm1_name":"Ehime"},{"adm1... {1660, 1654}
2791 [{"adm1_code":1652,"adm1_name":"Akita"},{"adm1... {1665, 1673, 1652, 1653, 1695}
2884 [{"adm2_code":35135,"adm2_name":"Hurukawasi"},... {1673}
3014 [{"adm1_code":1661,"adm1_name":"Hokkaidoo"}] {1661}
3824 [{"adm1_code":1690,"adm1_name":"Tookyoo"},{"ad... {1690, 1678}
4182 [{"adm1_code":1656,"adm1_name":"Hukuoka"}] {1656}
4253 [{"adm1_code":1656,"adm1_name":"Hukuoka"},{"ad... {1656, 1683}
5769 [{"adm1_code":1678,"adm1_name":"Niigata"},{"ad... {1664, 1692, 1678}
5912 [{"adm1_code":1675,"adm1_name":"Nagano"},{"adm... {1675, 1692, 1678}
6311 [{"adm1_code":1672,"adm1_name":"Mie"},{"adm1_c... {1672, 1677, 1685}
6606 [{"adm1_code":1652,"adm1_name":"Akita"},{"adm2... {1665, 1673, 1652}
6637 [{"adm2_code":33543,"adm2_name":"Hatinohesi"}] {1653}
7335 [{"adm1_code":1690,"adm1_name":"Tookyoo"},{"ad... {1690, 1687}
8403 [{"adm1_code":1652,"adm1_name":"Akita"},{"adm1... {1665, 1668, 1693, 1673, 1675, 1695, 1652, 165...
8447 [{"adm1_code":1695,"adm1_name":"Yamagata"},{"a... {1673, 1695}
9596 [{"adm1_code":1662,"adm1_name":"Hyoogo"}] {1662}
10468 [{"adm2_code":35261,"adm2_name":"Hakubamura"}] {1675}
11276 [{"adm1_code":1670,"adm1_name":"Kumamoto"}] {1670}
11291 [{"adm1_code":1670,"adm1_name":"Kumamoto"},{"a... {1674, 1683, 1670}
11631 [{"adm2_code":36364,"adm2_name":"Kurayosisi"}] {1691}
12449 [{"adm1_code":1662,"adm1_name":"Hyoogo"},{"adm... {1682, 1677, 1662, 1671}
12589 [{"adm2_code":34179,"adm2_name":"Atumatyoo"},{... {1661}
13030 [{"adm1_code":1664,"adm1_name":"Isikawa"},{"ad... {1664, 1673, 1678, 1695}
13949 [{"adm2_code":33868,"adm2_name":"Namiemati"}] {1657}
14005 [{"adm1_code":1651,"adm1_name":"Aiti"},{"adm1_... {1664, 1665, 1668, 1671, 1672, 1673, 1675, 167...
14584 NaN {}
15236 NaN {}

Count Earthquakes per Admin 1 Units

The can be done applying the explode method on the new Admin_1 column. The method will add rows based on the number of Admin 1 we have in each set inside the Admin_1 column. Then the counting can be performed using the former groupby approach.

count_per_adm1 = df_jpn.explode('Admin_1').groupby(
    'Admin_1')['DisNo.'].count().rename('EQ Count')
count_per_adm1.head()
Admin_1
1651    1
1652    4
1653    4
1654    1
1655    1
Name: EQ Count, dtype: int64

Recreate the Admin 1 Layer

Since the Japan geodataframe contains the admin2 geometries, we could load the Admin 1 layer or simply dissolve the geometries based on the ADM1_CODE column. The geopandas package is equipped with the dissolve method.

gdf_jpn_adm1 = gaul_adm2.dissolve(by='ADM1_CODE') 
gdf_jpn_adm1.plot()
<Axes: >

Output plot

Join the Two Datasets

Again, we can use the merge method to join the datasets together, here, based on their index.

gdf_jpn_adm1_merged = gdf_jpn_adm1.merge(count_per_adm1, 
                                         left_index=True, 
                                         right_index=True, 
                                         how='outer')

Make the Map

fig, ax = plt.subplots()

gdf_jpn_adm1_merged.plot(
    column='EQ Count', cmap='YlOrRd',
    linewidth=0.8, ax=ax,edgecolor='0.8',
    legend=True, 
    legend_kwds={'label': "Earthquake Count in EM-DAT"}
)
_ = ax.set_xlabel('Longitude')
_ = ax.set_ylabel('Latitude')

Output plot

We have just covered the basics on how to join the EM-DAT pandas DataFrame with a geopandas GeoDataFrame to make maps. To delve further into your analyses, we encourage you to continue your learning of geopandas, matplotlib, or, in particular, cartopy for more advanced map customization, with the many resources available online.